
MTH 264 Introduction to Matrix Algebra - Summer 2023.

LN0. Introduction to Logic.

Mathematical theory, at least in this course, is stated in the language of first-order logic. As such, we’ll do an

introduction of propositional logic – the basis machinery of first-order logic. Please do note the following discussion

mostly covers how to use the concepts that are important to this course, particularly how to use implications and

bijections. This is not meant to be a deeper dive on logic theory and so most of the terms written here are simplified.

Definition 0.1.

A truth function is a function that accepts truth values (either true or false) as input and produces a unique

truth value as output. A truth table is a representation of a truth function that considers all possible input

truth values and specifies the output truth value for each. A logical operator/connective is a symbol that

represents a truth function.

Definition 0.2.

Let A and B represent truth values. The logical operators NOT, OR, AND are truth functions described by

truth tables provided below. Note that the NOT operator accepts a single truth value; the OR and AND

operators accept two.

A NOT A

T F

F T

A B A OR B

T T T

T F T

F T T

F F F

A B A AND B

T T T

T F F

F T F

F F F

The logical operator NOT is usually called negation; AND called conjuction; and OR called disjunction.

Observe that both AND and OR are commutative operators, e.g. A AND B is the same as saying B AND

A. We can conclude this by comparing the truth tables of A AND B and B AND A and concluding they are equal

as functions (i.e. same inputs generate same outputs).

Observe that the naming of these logical operators mostly match their respective English interpretations. For

example, the NOT operator does as expected: turns true values into false and false values into true. However, we

need to be careful that we don’t confuse the meaning of a logical operator from the English meaning of its name.

For example, the word or may sometimes indicate a choice between two things and that both things can’t be chosen

simultaneously. This is not the true of the logical operator OR which returns true even if both input values are true.

Definition 0.3. Implications.

Let A and B represent two truth values. An implication A ⇒ B (read as A implies B) is a logical operator

that takes in two truth values and is described by the following truth table:

A B A ⇒ B

T T T

T F F

F T T

F F T

There are a number of ways we indicate an implication in English. Let A and B represent two truth values.
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The following statements often represent the relationship A ⇒ B:

1. B ⇐ A.

2. If A, then B.

3. B if A.

4. Let A be true. Then, B.

5. A is a sufficient condition for B.

Observe that for A ⇒ B: when the first argument A is false, the implication returns true regardless of the truth

value of B. Only when the first argument A is true does the truth value of the implication signify the truth value of

the second argument B.

Theorem 0.4. Negation of an Implication

Let A and B represent truth values. Then, the implication A ⇒ B is equivalent to the function B OR (NOT

A) and the negation of an implication NOT
(
A ⇒ B

)
is

(
NOT B

)
AND A.

Observe that the negation of an implication is not another implication. Instead, it’s a conjuction of two

statements. If you look at higher level math, you might see this being used for proofs by contradiction. This result

is useful if we know that an implication is false.

Definition 0.5. Converse and Contrapositive.

Let A and B represent two truth values. Let A ⇒ B be an implication. The converse of A ⇒ B is the

relationship B ⇒ A. The contrapositive of A ⇒ B is the relationship NOT B ⇒ NOT A.

Theorem 0.6. Relating the converse and the contrapositive to the implication.

Let A ⇒ B be an implication. Then, the converse B ⇒ A is not the same function as A ⇒ B. However, the

contrapositive NOT B ⇒ NOT A is the same function. The truth tables below summarize the results.

A B A ⇒ B

T T T

T F F

F T T

F F T

B ⇒ A

T

T

F

T

NOT A NOT B NOT B ⇒ NOT A

F F T

F T F

T F T

T T T

The main takeaway of the last statement should be that (1) the truth of an implication does not imply (we use

imply logically here) the truth of its converse and (2) the truth of an implication implies the truth of its contrapositive.

Therefore, in places where the contrapositive form of an implication is more useful, we can use the contrapositive.

However, the same doesn’t apply for the converse.

Additionally, there are some statements that seem like they signify an implication statement when they actually

state a converse relationship (relative to the seeming implication). That is, let A and B be statements. Then, the

following statements represent the relationship B ⇒ A (the converse of A ⇒ B):

1. A only if B.

2. A is a necessary condition for B.

Be careful with the first statement. This phrasing seems unintuitive. We’ll try not to use it in this course but you

may see in other resources/references.
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Definition 0.7. Bijection.

Let A and B represent two truth values. A bijection A ⇔ B (read as A if and only if B) is the function given

by (A ⇒ B) AND (B ⇒ A). We say that statements A and B are equivalent when there exists a bijection

between them (i.e. they are equal as truth functions).

We’ve added the truth table for A ⇔ B below:

A B A ⇔ B

T T T

T F F

F T F

F F T

Observe that given a bijection A ⇔ B is true: the truth value of A determines the truth value of B and the truth

value of B determines the truth value of A. This is why we often refer to a logical bijection as an equivalence.

Later on, we’ll be (in some sense) operating at the level of outputs. That is, we assume that a truth function

evaluates true and we also assume the truth of some of the inputs. Then, we can conclude the truth values of the

other inputs. The logical rules that let us make these conclusions are called argument forms or inference rules.

We’ve talked about these in the previous paragraphs but we’ll state some of these below for completion.

Theorem 0.8. Argument Forms

An argument form is a conclusion of some truth value based on the truth of other statements. Let A and B

be truth values. The following are common argument forms:

1. Simplification. Assume A AND B evaluates true. Then, A is true.

(By symmetry, we can also conclude that B is true.)

2. Disjuntive Syllogism. Assume A OR B is true. Assume A is false. Then, B must be true.

(By symmetry, assuming B is false, we can conclude that A must be true)

3. Modus Ponens. Assume A ⇒ B evaluates true and assume A is true. Then, B must be true.

4. Modus Tollens. Assume A ⇒ B evaluates true and assume B is false. Then, A must be false.

(Observe that this is modus ponens on the contrapositive)

For a bigger list of argument forms, please visit Wikipedia: Propositional Calculus: Basic and Derived Argument

Forms.

While knowing the names of these argument forms may help us talk about them (which is why they’re included

here), their names are most of the time not invoked in explanations. In fact, when we say something is a logical

conclusion, some of these argument forms are used in the background.

Observe we can verify the correctness of these argument forms by looking at the relevant truth tables. Take,

for example, modus ponens. Let A and B take truth values. Assuming A ⇒ B evaluates true, there are only three

possibilities of A and B: (1) A is true and B is true; (2) A is false and B is true; and (3) A is false and B is false.

With the additional assumption that A is true, the only possibility is the first one: A is true and B is true. Observe

that if we assume B is true, possibilities (1) and (2) are still valid and therefore, we can’t narrow down the truth

value of A. This is often what we refer to when we say the truth of an implication doesn’t imply the truth of its

converse.

Similarly, for disjunctive syllogism: Assuming that A OR B is true limits the possibilities to three: (1) A is

true and B is true; (2) A is true and B is false; and (3) A is false and B is true. With the additional assumption

that A is false, we’re limited to possibility (3) and therefore, B must be true.
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Finally, observe that the previous discussion does not talk about the statements A and B being functions of

objects, i.e. the statements are fixed and therefore, the object of concern is also fixed. Often, in mathematics, we

consider a certain set of objects and determine whether said object has a certain property. To account for this, we

introduce first-order logic.

Definition 0.9. Predicates.

Let X be some space of objects. A predicate P (x) is a function that accepts objects x ∈ X and returns a

truth value. Often, writing P (x) denotes that P (x) evaluates to true for the object x.

Since predicates have truth values are outputs, everything else before this (e.g. negation, implication, bijection)

also applies to predicates.

The notion of a predicate is important since we often don’t consider the “universal” set for our results (whichever

counts as universal). For example, when examining functions f(x), we only consider x such that x is in the domain

of f(x), not all real numbers x. In the case of f(x) = log(x), the domain is the set of all x such that x > 0. Later

on, we’ll consider more sets of objects such as the following:

1. Rn: the set of all n-tuples with coefficients in R.

2. Rn×m: the set of all n×m matrices with real number entries.

3. Cn×m: the set of all n×m matrices with complex number entries.

4. RN: the set of all sequences with real number entries (seen in MTH 265).

Most results only apply to certain sets of objects.

Definition 0.10. Quantifiers.

A quantifier is a statement on some set of objects X and how they relate to some predicate P (x). A quantifier

also has a truth value.

A universal quantifier is a statement that says for any object x ∈ X, the predicate P (x) evaluates true.

This relationship is often denoted as ∀x ∈ X,P (x) read as “for all x in X, P (x) is true”.

A existential quantifier is a statement that says for at least one object in a ∈ X, the predicate P (a)

evaluates true. This relationship is often denoted as ∃ a ∈ X,P (a) read as “there exists a in X such that P (a)

is true”.

The theorems we’ll see and use later in this course are often stated as universal or existential quantifiers. In

fact, some of the theorems and definitions discussed in algebra and calculus are universal and existential quantifiers.

We list some of those examples below.

Example 0.10.1. The polynomial f(x) = x3 − 3x+ 4 has a zero.

The definition of a zero of a function f(x) is a value x such that f(x) = 0. This is

our predicate. The space of objects we’re considering is the domain of f(x): the set of real

numbers R. Then, the statement above is an existential quantifier that states there exists

some real number a such that f(a) = 0.

Example 0.10.2. Every odd degree polynomial has a zero.

This is a universal quantifier with an existential quantifier inside. For the universal

quantifier, the space of objects we’re considering are all odd degree polynomials.

Example 0.10.3. Mean Value Theorem. Let f : [a, b] → R be a function such that f(x) is continuous on

page 4 of 8



[a, b] and differentiable on (a, b). Then, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Like the previous example, this is a universal quantifier with an existential quantifier

inside. For the universal quantifier, we refer to the space of all functions that are continuous

on [a, b] and differentiable on (a, b).

Then, the existential quantifier considers the set of real numbers between a and b.

In this course, some statements may be expressed as implications but are understood as implications in universal

quantifiers instead. We provide an example below.

Example 0.10.4. If x = −2, then (x− 4)2 = 0.

This is a universal quantifier on the space of real numbers R with a implication pred-

icate. This statement can be expressed equivalently as: for all x ∈ R: if x = −2, then x

satisfies (x− 4)2 = 0 (i.e. the equation is true and we get 0 = 0 when we plug in x).

While it may not make sense to understand this as a universal quantifier since the

condition x = −2 uniquely identifies x, it matters when we look at x = −2 as an equation

rather as an assignment. The next example covers why this matters.

Example 0.10.5. If (x− 4)2 = 0, then x = −2.

This is a false statement. From algebra, we know that (x − 4)2 = 0 has two

solutions: x = 2 and x = −2. The implication statement above is equivalent to saying that

if x satisfies (x− 4)2 = 0, then x is uniquely identified to be x = −2 – which is false unless

we are only considering x such that x ≤ 0. Looking at it as a universal quantifier: x = 2

satisfies (x− 4)2 = 0 but x = 2 does not satisfy x = −2.

A more correct statement would be: If (x− 4)2 = 0, then x = 2 or x = −2. If we add

the additional requirement of x ≤ 0, we can conclude by disjunctive syllogism that x = −2.

Sometimes, we might come across a result that tells us that a quantifier (universal or existential) is false. To

use those results, we provide negations of universal and existential quantifiers below. By the definition of negation,

the negation of a predicate is true when the predicate is false.

Theorem 0.11. Negation of Universal and Existential Quantifiers.

Let P (x) be a predicate. Then, the following bijections/equivalences apply:

1. NOT
(
∀x ∈ X,P (x)

)
⇐⇒ ∃x ∈ X, NOT P (x).

2. NOT
(
∃x ∈ X,P (x)

)
⇐⇒ ∀x ∈ X, NOT P (x).

Example 0.11.1. We then look at the earlier example: If (x − 4)2 = 0, then x = −2. As earlier, we can
understand this as: For all x ∈ R: if x satisfies (x− 4)2 = 0, then x = −2. We know this is

false. We can make this statement true by negating it. For brevity, let A(x) return true if

x satisfies (x− 4)2 = 0 and let B(x) return true if x = −2. Then,

NOT

(
∀x ∈ R, A(x) ⇒ B(x)

)
⇐⇒ ∃x ∈ R, NOT (A(x) ⇒ B(x))

⇐⇒ ∃x ∈ R, (NOT B(x)) AND A(x)

In other words, there exists x ∈ R such that x ̸= −2 and x satisfies (x − 4)2 = 0. Recall

that x = 2 makes this existential quantifier true.
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Also, observe that universal quantifiers ∀x ∈ X,P (x) can also be stated as implications x ∈ X ⇒ P (x).

Expressing the relationship this way is sometimes convenient when we want to use some theorems/results that give

us the falsity of P (x). Then, we can conclude that x ̸∈ X (read as x is not in X) by modus tollens.

Example 0.11.2. Intermediate Value Theorem (IVT). Let f(x) be continuous on [a, b]. Then, for all
y between f(a) and f(b), there exists c ∈ [a, b] such that f(c) = y. For the sake of this

example, let I(f(x)) be the predicate that accepts functions f(x) and returns true if f(x)

satisfies IVT.

However, assuming the Intermediate Value Theorem is false for some function g(x),

then we can conclude that g(x) is not continuous on [a, b]. In other words, we’re using the

contrapositive of this implication: If g(x) is continuous on [a, b], then I(g(x)) is true.

Going further, negating the universal quantifier on y ∈ [f(a), f(b)] (assuming f(a) ≤
f(b)), we can conclude that there exists y such that there is no x ∈ [a, b] such that f(x) = y.

For this course, we would rarely determine the truth value of existential and universal quantifiers (i.e. if we’re

determining if those are true for some set of objects X, then we’re actually doing proofs). Most of the time, we will

provide those results for you and we’ll use said results for our calculations.

Lastly, we introduce uniqueness and what that means logically.

Definition 0.12. Uniqueness.

LetX be some set of objects with a notion of equality denoted by a = b for objects a, b ∈ X. Let P (x) be a pred-

icate on X. We say that x uniquely satisfies P (x) if the universal quantifier ∀x, y ∈ X :
(
P (x) AND P (y)

)
⇒

x = y is true.

Uniqueness is often a major result in mathematics and allows us to refer to an object as “the” object related

to some property. In other words, there is exactly one object in X (distinguishable by that notion of equality) that

satisfies a certain property.

Example 0.12.1. An additive inverse of a real number x ∈ R is y such that x+ y = 0. It can be proven that
this additive inverse is unique (i.e. there is only one real number y satisfying x+ y = 0 for

fixed x) and that it is given by y = −x. Therefore, we can speak of the additive inverse of

a real number x.

That example may seem obvious but there are other cases where uniqueness is either not immediately obvious and

hard to prove.

Example 0.12.2. Let L = {(x, y) ∈ R2} be a line. Define m as the following expression:

m =
y2 − y1
x2 − x1

for any pairs of points (x1, y1) and (x2, y2). Then, m is uniquely determined (i.e. there is no

other value k such that k ̸= m and k satisfies the expression above for any pairs of points).

We call m the slope of the line. This is either given to you as a definition or as a result.

Example 0.12.3. Let x be a nonzero rational number. The reciprocal of x is a rational number y such that
x · y = 1.

Observe that if x = 1
2 , then y = 2

1 and y = 4
2 both satisfy xy = 1. However, because

we consider 2
1 and 4

2 as equal as rational numbers, the reciprocal of x is unique.

Note that we’ve used the notion that two rational numbers p
q ,

r
s are equal if and only

if there exists a nonzero rational number x such that p = xr and q = xs.

When the notion of equality used is not the usual “equality”, when often say that it’s “up to” that notion of equality.
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Example 0.12.4. Given a plane P in R3, a normal vector N ∈ R is a vector such that for all x, y ∈ P , N is
orthogonal to x− y. This normal vector is unique up to multiplication by a nonzero scalar.

In other words, ifN = (0, 2, 3)T ∈ R3 is a normal vector to P , the vector 2N = (0, 4, 6)T

is also a normal vector to P and so is −3N = (0,−6,−9)T . Similarly, if some other vector

v ∈ R3 is not a nonzero scalar multiple of N , then v is not a normal vector.

Finally, we introduce some terms that may appear in our discussion for this course. These terms have been used

before this part of the document and are used in the same context. Do note that these terms may be understood

differently in other contexts/areas and this is what the author has seen so far (i.e., up to the Master’s level).

Convention 0.13.

Here are some commonly used terms in this course.

1. Definition. This is a placeholder name in the usual language that states some predicate P (x) is true.

This makes discussions of said objects easier to understand. While definitions are usually stated as

implications, they’re understood as bijections.

2. Proposition. A result stating the truth of some quantifier.

3. Theorem. This is major result stating the truth of some quantifier. Note here that the term “major” is

relative, i.e. some theorems may prove results in a bigger set of objects than other theorems.

Some of these terms may also pop up in our discussion but will appear less often.

4. Lemma. This is a minor result, often used in a proof of a theorem with the same assumptions as the

theorem in question. Again, the term “minor” is relative.

5. Corollary. This is a result that immediately follows a theorem. Here, immediately implies that a

relatively small set of results and inference rules were used.

6. Conjecture. A claim stating the truth of some quantifier on a tentative basis without proof. i.e. we

don’t know for certain that it is true but it is probably true based on some reasoning.

Here are some examples of usage for those terms. Some of these will be discussed in MTH 264.

Example 0.13.1. Definition. A matrix A ∈ Rn×n is invertible if there exists B ∈ Rn×n such that AB =
BA = In where In is the identity matrix on Rn×n.

We use this in either of two ways: (1) we assume that a matrix A is invertible and

say B is an inverse of A. Then, we use B in some calculation/proof; (2) we show that a

matrix is invertible by showing the existential quantifier is true, i.e. we find B such that

AB = BA = In. Later in the course, you’ll see that we can find B by Gaussian elimination.

Example 0.13.2. Theorem. Fix A ∈ Rn×n such that A is invertible. Let B ∈ Rn×n such that AB = BA =
In. Then, B is unique.

This result is needed to define B as the inverse of A and to denote A−1 = B.

Otherwise, the notation A−1 is ambiguous.

Example 0.13.3. Corollary. The inverse of the identity matrix In is itself, i.e. I−1
n = In.

This immediately follows the theorem in the previous example since InIn = In.

Example 0.13.4. Fermat’s Last Theorem: there exists no three positive integers a, b, and c such that for
all integers values n with n > 2, an + bn = cn.

Despite the naming, Fermat’s Last Theorem, stated around 1637 by Pierre de Fermat,

stayed as a conjecture for 358 years. Fermat stated that he had a proof but it was too large

to fit in the margin. The first proper proof was finally published by Andrew Wiles in 1995.
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Note that different definitions may be used across various fields or levels of generality. When a different definition

is provided, there is usually some theorem/result that states that both definitions (the old and the new) agree in

some specific sense.

Example 0.13.5. Let f : R → R be a function. The following are definitions for the continuity of f(x) at
x = a ∈ R.

In differential calculus: A function f(x) is continuous at x = a if and only if f(a) =

limx→a f(x). Observe that the second statement requires that the limit limx→a f(x) exists.

In topology/advanced calculus: A function f(x) is continuous at x = a if and only if for

all ϵ > 0, there exists δϵ > 0 such that for all x ∈ R satisfying |x−a| < δϵ, |f(x)−f(a)| < ϵ.

Observe that (1) δ has the subscript of ϵ to denote that the value of δ depends on the given

ϵ and (2) this definition looks very similar (but not the same) to the epsilon-delta definition

of limits introduced in differential calculus.

Note: If you don’t see how these two definitions agree, don’t worry about it for now.

In fact, we don’t see this in this course. I’ve included this here since you might see alternate

definitions for terms we’ve used in this course if you use other resources. That’s fine.

Alternate definitions can be convenient for several reasons: e.g. (1) we need to generalize the current definition

to a bigger set of objects; (2) the alternate definition is easier to use in proofs; (3) the alternate definition is easier

to understand.

As a final note, it’s not very critical that you use these terms right. However, some of the material in this class

may be stated in the language above and so it’s added here for reference.
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